Is the abyssal overturning driven by breaking internal waves?

C. de Lavergne (LOCEAN), G. Madec (LOCEAN/NOCS) J. Le Sommer (LGGE) G. Nurser (NOCS), A. Naveira Garabato (NOCS)

NewWave workshop, 15/10/2015

Introduction - The diabatic overturning circulation

Balance between advection and diffusion: Dia-neutral advection = Divergence of buoyancy flux

$$\omega \partial_z \rho = \partial_z (K_\perp \partial_z \rho)$$

Or accounting for non-linearity: $\omega \partial_z \rho = \rho \alpha \ \partial_z (K_{\perp} \partial_z \theta) + \rho \beta \ \partial_z (K_{\perp} \partial_z S)$

To obtain ω , we need a 3-D map of K_{\perp} .

Methods (2/3) - Parameterization of internal wave-driven mixing

St Laurent et al. 2002:

$$\mathcal{E}_T(x, y, z) = \frac{1}{\rho} q E(x, y) F(z)$$

Fraction of energy
dissipationColumn-integrated energy
dissipation [W m-2]Vertical structure of energy
dissipation [m-1]Near-field1/3Internal tide generation rateExponential decay from seafloorFar-field2/3Spread around generation sites4 tested structures

Methods (3/3) – Bottom energy fluxes E(x,y)

Dianeutral transports: zonal view

Dianeutral transports: geothermal heating

Consistent with results of Emile-Geay & Madec (2009)

Dianeutral transports: near-field mixing, constant R_f

Consistent with OGCM simulations of Saenko & Merryfield (2005) and Melet et al. (2014)

Dianeutral transports: total near-field, sensitivity to R_f

Total near-field = lee waves + locally-dissipating internal tides

What about remotely-dissipating internal tides?

Dianeutral transports: far-field tidal mixing, constant R_f

Dianeutral transports: far-field tidal mixing, sensitivity to R_f

E_{far-field} (x,y) = energy spread around generation sites over a 1,000 km radius

	Constant R _f	Variable <i>R_f</i>	Vertical structure
AABW upwelling rate (Sv)	1	1	F(z) ∝ N² Koch-Larrouy et al. 2007
	6	4	F(z) ∝ N Gargett 1984, Melet et al. subm.
	16	9	F(z) ∝ 1 Oka & Niwa 2013
	23	11	F(z) ∝ 1/N
	9	4	Near-field (lee + tides)

=> Impact of variable R_f depends on vertical structure of dissipation

Conclusions

- Bottom-intensified mixing by breaking internal waves: small contributor to AABW upwelling.
- Concentrated mixing quickly saturates.
 - → Unless strong density gradients can be maintained, such as in deep overflows.
- Remotely-dissipating internal tides: vertical structure is key.
- More work is needed to
 - Constrain the horizontal and vertical distributions of internal wave-driven turbulence from observations and theory.
 - Improve model parameterizations of deep mixing accordingly.

de Lavergne, Madec, Le Sommer, Nurser & Naveira Garabato, JPO:

On the consumption of Antarctic Bottom Water in the abyssal ocean (in revision) The impact of a variable mixing efficiency on the abyssal overturning (in press)

The no-flux bottom boundary condition implies that mixing efficiency is zero at the seafloor.

Physically, the buoyancy flux must vanish together with the stratification:

$$K_{\perp} N^2 = R_f \varepsilon_T \xrightarrow[N^2 \to 0]{} 0$$

(In the limit of a homogenous fluid, mixing cannot drive a buoyancy flux.)

=> How can we account for reduced mixing efficiency in weak stratification?

The Re_b-dependent model (Shih et al. 2005, Bouffard & Boegman 2013)

The meridional overturning circulation: diabatic and adiabatic pathways

Candidate buoyancy sources for AABW

1. Turbulent mixing, thought to be primarily driven by internal wave breaking.

Quantified deep ocean internal wave energy sources include:

2. Geothermal heating.

- Global ocean heat flux of about 30 TW.
- Potential energy source of about 0.05 TW => often assumed to be negligible.

Effective diffusivity: near-field + far-field + geothermal

Recent results

• Oka & Niwa (2013):

Internal tides Near-field + Far-field Sufficient to simulate 8 Sv Pacific deep MOC (in agreement with observations: 7-10 Sv)

Nikurashin & Ferrari (2013):

Lee waves + Internal tides Near-field Sufficient to upwell 25 Sv of AABW

 Emile-Geay & Madec (2009): Geothermal heating
5 Sv of AABW upwelling

depth (km)

Preliminary remarks: depth-decreasing dissipation

Dia-neutral advection = Divergence of buoyancy flux

Preliminary remarks: depth-increasing dissipation

Dia-neutral advection = Divergence of buoyancy fluxes

$$\boldsymbol{\omega} = \frac{1}{N^2} \partial_z (\boldsymbol{K}_\perp N^2) = \frac{1}{N^2} \partial_z (\boldsymbol{R}_f \boldsymbol{\varepsilon}_T)$$

The key role of incrop areas

Geothermal transformation vs. incrop area

